网络编程

网络分层图 #

![[net_layer.png]]

  • TCP是传输层的协议,而基于TCP造出来的HTTP和各类RPC协议,它们都只是定义了不同消息格式的应用层协议而已。
  • HTTP协议(Hyper Text Transfer Protocol),又叫做超文本传输协议。我们用的比较多,平时上网在浏览器上敲个网址就能访问网页,这里用到的就是HTTP协议。
  • RPCRemote Procedure Call),又叫做远程过程调用。它本身并不是一个具体的协议,而是一种调用方式。虽然大部分RPC协议底层使用TCP,但实际上它们不一定非得使用TCP,改用UDP或者HTTP,其实也可以做到类似的功能。

RPC #

vs HTTP #

HTTP: ![[http.png]] RPC: ![[rpc.png]]

服务发现 [x] #

首先要向某个服务器发起请求,你得先建立连接,而建立连接的前提是,你得知道IP地址和端口。这个找到服务对应的IP端口的过程,其实就是服务发现

HTTP中,你知道服务的域名,就可以通过DNS服务去解析得到它背后的IP地址,默认80端口。

RPC的话,就有些区别,一般会有专门的中间服务去保存服务名和IP信息,比如consul或者etcd,甚至是redis。想要访问某个服务,就去这些中间服务去获得IP和端口信息。由于dns也是服务发现的一种,所以也有基于dns去做服务发现的组件,比如CoreDNS

底层连接形式 [x] #

以主流的HTTP1.1协议为例,其默认在建立底层TCP连接之后会一直保持这个连接(keep alive),之后的请求和响应都会复用这条连接。

RPC协议,也跟HTTP类似,也是通过建立TCP长链接进行数据交互,但不同的地方在于,RPC协议一般还会再建个连接池,在请求量大的时候,建立多条连接放在池内,要发数据的时候就从池里取一条连接出来,用完放回去,下次再复用,可以说非常环保。

由于连接池有利于提升网络请求性能,所以不少编程语言的网络库里都会给HTTP加个连接池,比如go就是这么干的。

可以看出这一块两者也没太大区别,所以也不是关键。

传输的内容 #

基于TCP传输的消息,说到底,无非都是消息头header和消息体body。

header是用于标记一些特殊信息,其中最重要的是消息体长度

body则是放我们真正需要传输的内容,而这些内容只能是二进制01串,毕竟计算机只认识这玩意。所以TCP传字符串和数字都问题不大,因为字符串可以转成编码再变成01串,而数字本身也能直接转为二进制。但结构体呢,我们得想个办法将它也转为二进制01串,这样的方案现在也有很多现成的,比如json,protobuf。

这个将结构体转为二进制数组的过程就叫序列化,反过来将二进制数组复原成结构体的过程叫反序列化。 ![[tobytes.png]]

序列化和反序列化

对于主流的HTTP1.1,虽然它现在叫超文本协议,支持音频视频,但HTTP设计初是用于做网页文本展示的,所以它传的内容以字符串为主。header和body都是如此。在body这块,它使用json序列化结构体数据。

我们可以随便截个图直观看下。 ![[tobetes_details.png]] HTTP报文

可以看到这里面的内容非常多的冗余,显得非常啰嗦。最明显的,像header里的那些信息,其实如果我们约定好头部的第几位是content-type,就不需要每次都真的把"content-type"这个字段都传过来,类似的情况其实在body的json结构里也特别明显。

而RPC,因为它定制化程度更高,可以采用体积更小的protobuf或其他序列化协议去保存结构体数据,同时也不需要像HTTP那样考虑各种浏览器行为,比如302重定向跳转啥的。因此性能也会更好一些,这也是在公司内部微服务中抛弃HTTP,选择使用RPC的最主要原因。

当然上面说的HTTP,其实特指的是现在主流使用的HTTP1.1HTTP2在前者的基础上做了很多改进,所以性能可能比很多RPC协议还要好,甚至连gRPC底层都直接用的HTTP2

结论 #

  • 纯裸TCP是能收发数据,但它是个无边界的数据流,上层需要定义消息格式用于定义消息边界。于是就有了各种协议,HTTP和各类RPC协议就是在TCP之上定义的应用层协议。
  • RPC本质上不算是协议,而是一种调用方式,而像gRPC和thrift这样的具体实现,才是协议,它们是实现了RPC调用的协议。目的是希望程序员能像调用本地方法那样去调用远端的服务方法。同时RPC有很多种实现方式,不一定非得基于TCP协议
  • 从发展历史来说,**HTTP主要用于b/s架构,而RPC更多用于c/s架构。但现在其实已经没分那么清了,b/s和c/s在慢慢融合。**很多软件同时支持多端,所以对外一般用HTTP协议,而内部集群的微服务之间则采用RPC协议进行通讯。
  • RPC其实比HTTP出现的要早,且比目前主流的HTTP1.1性能要更好,所以大部分公司内部都还在使用RPC。
  • HTTP2.0HTTP1.1的基础上做了优化,性能可能比很多RPC协议都要好,但由于是这几年才出来的,所以也不太可能取代掉RPC。

TCP #

八股文常背,TCP是有三个特点,面向连接可靠、基于字节流

粘包问题 #

因为: ![[tcp_is_dataflow.png]] 所以: ![[nianbaowenti.png]] 无法区分上述两种情况。 得出: 纯裸TCP是不能直接拿来用的,你需要在这个基础上加入一些自定义的规则,用于区分消息边界

于是我们会把每条要发送的数据都包装一下,比如加入消息头消息头里写清楚一个完整的包长度是多少,根据这个长度可以继续接收数据,截取出来后它们就是我们真正要传输的消息体

建立连接示例 #

![[socket_connect.gif]]

三次握手: #

  1. 客户端通过向服务器端发送一个SYN来创建一个主动打开,作为三次握手的一部分。客户端把这段连接的序号设定为随机数 A。
  2. 服务器端应当为一个合法的SYN回送一个SYN/ACK。ACK 的确认码应为 A+1,SYN/ACK 包本身又有一个随机序号 B。
  3. 最后,客户端再发送一个ACK。当服务端受到这个ACK的时候,就完成了三路握手,并进入了连接创建状态。此时包序号被设定为收到的确认号 A+1,而响应则为 B+1。

如图:![[3w4h.png]] #

四次挥手: #

注意: 中断连接端可以是客户端,也可以是服务器端。下面仅以客户端断开连接举例,反之亦然:

  1. 客户端发送一个数据分段, 其中的 FIN 标记设置为1. 客户端进入 FIN-WAIT 状态. 该状态下客户端只接收数据, 不再发送数据.
  2. 服务器接收到带有 FIN = 1 的数据分段, 发送带有 ACK = 1 的剩余数据分段, 确认收到客户端发来的 FIN 信息.
  3. 服务器等到所有数据传输结束, 向客户端发送一个带有 FIN = 1 的数据分段, 并进入 CLOSE-WAIT 状态, 等待客户端发来带有 ACK = 1 的确认报文.
  4. 客户端收到服务器发来带有 FIN = 1 的报文, 返回 ACK = 1 的报文确认, 为了防止服务器端未收到需要重发, 进入 TIME-WAIT 状态. 服务器接收到报文后关闭连接. 客户端等待 2MSL 后未收到回复, 则认为服务器成功关闭, 客户端关闭连接.

Web问题 #

GET vs POST #

有人想要的答案 #

但是这个不正确

  1. GET使用URL或Cookie传参。而POST将数据放在BODY中。
  2. GET的URL会有长度上的限制,则POST的数据则可以非常大。
  3. POST比GET安全,因为数据在地址栏上不可见。

HTTP协议对GET和POST都没有对长度的限制 #

     HTTP协议明确地指出了,HTTP头和Body都没有长度的要求。而对于URL长度上的限制,有两方面的原因造成:

  1. 浏览器。据说早期的浏览器会对URL长度做限制。据说IE对URL长度会限制在2048个字符内(流传很广,而且无数同事都表示认同)。但我自己试了一下,我构造了90K的URL通过IE9访问live.com,是正常的。网上的东西,哪怕是Wikipedia上的,也不能信。
  2. 服务器。URL长了,对服务器处理也是一种负担。原本一个会话就没有多少数据,现在如果有人恶意地构造几个几M大小的URL,并不停地访问你的服务器。服务器的最大并发数显然会下降。另一种攻击方式是,把告诉服务器Content-Length是一个很大的数,然后只给服务器发一点儿数据,嘿嘿,服务器你就傻等着去吧。哪怕你有超时设置,这种故意的次次访问超时也能让服务器吃不了兜着走。有鉴于此,多数服务器出于安全啦、稳定啦方面的考虑,会给URL长度加限制。但是这个限制是针对所有HTTP请求的,与GET、POST没有关系。

安全不安全和GET、POST没有关系 #

Cookie和Session #

CookieSession
储存位置客户端服务器端
目的跟踪会话,也可以保存用户偏好设置或者保存用户名密码等跟踪会话
安全性不安全安全
session技术是要使用到cookie的,之所以出现session技术,主要是为了安全。

HTTP和HTTPS #

状态码定义
1xx 报告接收到请求,继续进程
2xx 成功步骤成功接收,被理解,并被接受
3xx 重定向为了完成请求,必须采取进一步措施
4xx 客户端出错请求包括错的顺序或不能完成
5xx 服务器出错服务器无法完成显然有效的请求
403: Forbidden 404: Not Found
HTTPS握手,对称加密,非对称加密,TLS/SSL,RSA

CSRF和XSS #

  • CSRF(Cross-site request forgery)跨站请求伪造
  • XSS(Cross Site Scripting)跨站脚本攻击 CSRF 重点在请求,XSS 重点在脚本。

CGI和WSGI #

CGI是通用网关接口,是连接web服务器和应用程序的接口,用户通过CGI来获取动态数据或文件等。 CGI程序是一个独立的程序,它可以用几乎所有语言来写,包括perl,c,lua,python等等。

WSGI, Web Server Gateway Interface,是Python应用程序或框架和Web服务器之间的一种接口,WSGI的其中一个目的就是让用户可以用统一的语言(Python)编写前后端。